Structural stability for variable exponent elliptic problems, II: The -Laplacian and coupled problems
نویسندگان
چکیده
منابع مشابه
Structural stability for variable exponent elliptic problems. II. The p(u)-laplacian and coupled problems
We study well-posedness for elliptic problems under the form b(u)− div a(x, u,∇u) = f, where a satisfies the classical Leray-Lions assumptions with an exponent p that may depend both on the space variable x and on the unknown solution u. A prototype case is the equation u− div ( | ∇u| ∇u ) = f . We have to assume that infx∈Ω, z∈R p(x, z) is greater than the space dimensionN . Then, under mild r...
متن کاملStructural stability for variable exponent elliptic problems. I. The p(x)-laplacian kind problems
We study the structural stability (i.e., the continuous dependence on coefficients) of solutions of the elliptic problems under the form b(un)− div an(x,∇un) = fn. The equation is set in a bounded domain Ω of R and supplied with the homogeneous Dirichlet boundary condition on ∂Ω. Here b is a non-decreasing function on R, and (
متن کاملp-Laplacian problems with critical Sobolev exponent
We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2010
ISSN: 0362-546X
DOI: 10.1016/j.na.2010.02.044